However, we still need a prediction result in the original range, which is the reverse of scaling.
In r, we could do this:
attributes(d$s.x)
d$s.x * attr(d$s.x, 'scaled:scale') + attr(d$s.x, 'scaled:center')
for example:
> x <- 1:10
> s.x <- scale(x)
> s.x
[,1]
[1,] -1.4863011
[2,] -1.1560120
[3,] -0.8257228
[4,] -0.4954337
[5,] -0.1651446
[6,] 0.1651446
[7,] 0.4954337
[8,] 0.8257228
[9,] 1.1560120
[10,] 1.4863011
attr(,"scaled:center")
[1] 5.5
attr(,"scaled:scale")
[1] 3.02765
> s.x * attr(s.x, 'scaled:scale') + attr(s.x, 'scaled:center')
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5,] 5
[6,] 6
[7,] 7
[8,] 8
[9,] 9
[10,] 10
attr(,"scaled:center")
[1] 5.5
attr(,"scaled:scale")
[1] 3.02765
ref:
http://stackoverflow.com/questions/10287545/backtransform-scale-for-plotting
If it helps, you could also try the R library:
http://www.inside-r.org/packages/cran/DMwR/docs/unscale
No comments:
Post a Comment